
Unfolding and unzipping of single-stranded DNA by stretching

Alexei V. Tkachenko*
Michigan Center for Theoretical Physics and Department of Physics, University of Michigan, 500 East University Avenue,

Ann Arbor, Michigan 48109, USA
(Received 1 April 2003; revised manuscript received 31 March 2004; published 2 November 2004)

We present a theoretical study of single-stranded DNA under stretching. Within the proposed framework, the
effects of base pairing on the mechanical response of the molecule can be studied in combination with an
arbitrary underlying model of chain elasticity. In a generic case, we show that the stretching curve of single-
stranded DNA exhibits two distinct features: the second-order “unfolding” phase transition, and a sharp cross-
over, reminiscent of the first-order “unzipping” transition in double-stranded DNA. We apply the theory to the
particular cases of wormlike chain and freely jointed chain models, and discuss the universal and model-
dependent features of the mechanical response of single-stranded DNA. In particular, we show that variation of
the width of the unzipping crossover with interaction strength is very sensitive to the energetics of hairpin
loops. This opens another way of testing the elastic properties of ssDNA.
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I. INTRODUCTION

Dramatic progress has been made over the last decade in
employing single-molecule micromanipulation techniques
for studies of biological materials and processes. Pioneered
by the work of Smithet al. [1] on stretching of double-
stranded DNA(dsDNA), these techniques have later been
applied to study proteins, DNA-protein interactions, chromo-
somes, etc. Chain-stretching experiments were also per-
formed on single-stranded DNA molecules(ssDNA) [2–5].

One could expect the response of ssDNA to stretching to
be dramatically different from that of dsDNA, because of the
effects of the possible base pairing between complementary
segments of the chain. The need for understanding of the
resulting mechanical behavior has already attracted consid-
erable attention from theorists[6–10]. In particular, it has
been shown[7–9] that in the thermodynamic limit, the
ssDNA chain should undergo a second-order phase transi-
tion, at a finite critical force. Formally, this phenomenon is
very similar to the hypothetical native-molten transition in
RNA [11], as well as to the classical(yet unconfirmed) pic-
ture of dsDNA denaturation[12].

The predicted critical behavior is qualitatively different
from another related phenomenon, the force-induced dena-
turation (unzipping) of dsDNA [13,14]. The unzipping is a
first-order transition, which occurs as a result of competition
between the elastic energy of the stretched ssDNA, and the
base pairing(hybridization) energy within dsDNA. The very
same effects are essential for the above second-order phase
transition in stretched ssDNA. As a part of the present work,
we will clarify the relationship between the two phenomena.

The theoretical modeling of ssDNA and RNA is tradition-
ally done within a freely jointed chain(FJC) model. Its ex-
tensible version was originally used for fitting the early
ssDNA stretching data[2]. However, both the microscopic
structure of ssDNA and the recent experiments with DNA

hairpin constructs[15,16] strongly suggest a picture with a
finite bending modulus of its backbone, which feature is
reminiscent of the semiflexible wormlike chain(WLC)
model [17]. Nevertheless, being a continuous model, the
WLC description is unlikely to be valid in the regimes when
the discrete nature of chemical bonds becomes relevant(e.g.,
for a sufficiently high stretching force). To overcome this
limitation, a discrete persistent chain(DPC) model has been
proposed for ssDNA in recent work by Storm and Nelson
[18]. Interestingly, the WLC itself was originally introduced
by Kratky and Porod[17] as the continuous limit of a similar
discretized model. The authors of[18] have shown that the
extensible versions of all three models(FJC, WLC, and
DPC) produce a good fit to the experimentally observed
stretching curves, as long as the force is not too high(f
&200 pN for the FJC, andf &400 pN for the WLC and
DPC).

The central idea of our paper is to include the effects of
base pairing within a theoretical framework compatible with
an arbitrary underlying model of ssDNA elasticity. In this
way we can separate the two parts of the problem: the search
for an adequate elastic description of ssDNA, and the evalu-
ation of the effects of its self-interactions. In fact, one may
be able to start with an empirical elastic model extracted
from independent experiments, and use our theory to predict
the stretching behavior of the chain after “switching on” the
base pairing interactions.

II. THEORETICAL FRAMEWORK

We consider a ssDNA chain subjected to an external pull-
ing force f. As an input for our theory, one has to specify two
functions characterizing the system without self-interactions:
qelsfd, the elastic free energy per unit chain length vs pulling
force; andFloopsld, the free energy of a loop as a function of
its contour length. Our goal is to study the effect of interac-
tions between complementary segments of the chain. Simi-
larly to Ref.[7], we assume the interaction strength to be the
same for any two chain fragments. It will be characterized by*Electronic address: alexei@umich.edu
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a single parametere, defined as the pairing energy per unit
chain length. Strictly speaking, this should limit the applica-
bility of our approach to self-complementary periodic se-
quences of ssDNA(such as ATATAT). However, as discussed
in [7,8], this uniform model may be reasonably adequate for
random sequences, too. Nevertheless, the effect of random-
ness remains an important problem for future studies.

Hybridization of distant chain segments results in looping.
Therefore, the interactions reduce the effective(free) chain
length l exposed to the stretching force. Our goal is to cal-
culate the partition function of the systemZsL , ld, param-
etrized by the total chain lengthL and free lengthl. The
general form of the interaction-free partition function is
Z0sL , ld=expsm0LddsL− ld, becausel andL coincide, and dif-
ferent chain segments are statistically independent(we ne-
glect excluded volume effects). Without loss of generality,
one can choosem0=0. It is useful to perform a double
Laplace transform of the partition functionZsL , ld. This re-
sults in introduction of the parametersm andq, conjugated to
L andl, respectively(the parameterm conjugated to the total
length is often called the fugacity):

Zsm,qd =E
0

` E
0

`

ZsL,ldexpf− mL − qlgdL dl. s1d

In particular,Z0sm ,qd=1/sm+qd. Since the elastic part of the
free energy isqelsfdl, the overall free energy may be ex-
pressed as

FsL, fd = − logE
−i`

+i`

Zfm,qelsfdgemL dm

2pi
. s2d

Here and below, we takekBT=1.
It is well known that the partition function of uniform

RNA or ssDNA may be calculated in a recursive manner,
reminiscent of the Hartree approximation[6–11]. This calcu-
lation can be represented in a diagrammatic form shown in
Fig. 1. The solid lines correspond to the bare partition func-
tion Z0; dotted fragments connected with dashed lines repre-
sent pairing(hybridization) of the corresponding chain seg-
ments. Within our approach, the energy cost of the pairing is
eLhyb+Floopsld, where Lhyb is the length of the hybridized
region, andl is the free length of the chain segment being
“internalized” due to the looping. In fact, one can extend our

approach to a more general form of hybridization energy,
«0+eLhyb, with the constant«0.0 representing the energy
cost of termination of the double-stranded segment. Intro-
duction of«0 accounts for the cooperativity of the base pair-
ing interactions.

Traditionally, problems involving DNA or RNA folding or
denaturation are studied within a discrete model. Each dis-
crete “monomer” in this approach represents a chain segment
which can hybridize independently of its neighbors. Its
length is assumed to be equal to the statistical segment,
which makes it easy to combine this description with the FJC
model. Since we are interested in developing a theory for an
arbitrary model of chain elasticity, it is logical to abandon
this artificial discretization of hybridized segments. Of
course, the base pairing remains fundamentally discrete on
the length scalel0 of a single base. As long as the relevant
physics occurs on larger scales, ssDNA can be considered as
a continuous chain.

The crucial observation is that one can typically neglect
all the diagrams with intersecting dashed lines. Such a situ-
ation would correspond to a “pseudoknot,” whose probabil-
ity is low because it requires winding of ssDNA or RNA
around itself [Fig. 1(b)]. Thanks to this topological con-
straint, the self-energy diagram entering the Dyson equation
[Fig. 1(c)] may be calculated exactly within the one-loop
(Hartree) approximation. Since we have assumed a uniform
interaction parameter, the problem has a particularly simple
form in the Laplace representation:

Z−1sm,qd = Z0
−1sm,qd −E E E dL8dL9dl

l0
3 ZsL8,ld

3expf− ms2L9 + L8d − eL9 − Floopsld − «0g.

s3d

From here, one can obtain

Z−1sm,qd = m + q −
Wsqmd
2m + e

, s4d

wereqm corresponds to the pole inZsm ,qd, and

Wsqd =
e−«0

l0
3 E

0

`

expf− Floopsld + qlgdl. s5d

III. GENERIC BEHAVIOR: “UNZIPPING” VERSUS
“UNFOLDING”

In the thermodynamic limitsL→`d,

l = U−
]

] q
logE

−i`

+i`

Zsm,qdemL dm

2pi U
qelsfd

= U− L
dmq

dq
U

qelsfd
.

s6d

Here the functionmqsqd again corresponds to the pole in
Zsm ,qd, i.e., it is inverse toqmsmd. Explicitly,

FIG. 1. Schematic representation of partition function calcula-
tion. Thin solid lines representZ0, while dashed lines indicate base
pairing of distant chain segments(dotted).
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mqsqd = −
1

2
F e

2
+ q −ÎS e

2
− qD2

+ 2WsqdG . s7d

This yields the following result for the free length as a func-
tion of tension:

l

L
=

1

2S1 −
qel − e/2 + W8sqeld

Îsqel − e/2d2 + 2Wsqeld
D . s8d

HereW8;dW/dq. Note that from the definition of the func-
tion W, Eq. (5), one can relate its logarithmic derivative to
the average length of the loop:

l loopsqd =
W8

W
. s9d

If l is known, one can easily find the relative elongation of
the chain, i.e., the ratio of the end-to-end distanceR to the
total chain lengthL, which is observable experimentally:

R

L
= xl = −

1

2

] qel

] f S1 −
qel − e/2 + W8sqeld

Îsqel − e/2d2 + 2Wsqeld
D . s10d

Herex=−]qel/]f is the relative elongation of the free portion
of the chain.

According to Eq.(8), in the strong stretching limitsqel

→−`d the chain becomes completely “free:”l →L. Further
examination of our expression for the free length reveals its
peculiar behavior near the pointqel=e /2. In fact, in the limit
of vanishingW (i.e., very high energy cost of a loop), lsqeld
becomes a step function changing from 0 toL at that point.
In a realistic situation, it is transformed into a crossover
whose width depends onW as

dq = Î2Wse/2d. s11d

Since the location of that crossover corresponds to the point
were the hybridization free energy is exactly equal to the
elastic one, we conclude that this behavior is directly related
to the first-orderunzippingtransition of dsDNA. The transi-
tion is transformed into the crossover due to the finite size of
the hybridized segments.

Another important feature of our result is that the free
fraction of the chainl /L goes to zero at finite tensionqel
=q* . According to Eq.(8) the condition for this to happen is

q* − e/2 =
Wsq*d
W8sq*d

−
W8sq*d

2
=

1

l loopsq*d
−

l loopsq*d
l0
2 Wsq*d.

s12d

This point corresponds to the second-order phase transition
that has been reported in the earlier studies of the problem.
The crucial observation is that this transition is physically
distinct from the unzipping crossover. It may be viewed as a
precursor of force-induced denaturation. Indeed, even when
the tension in the free segments is still insufficient to over-
come the binding energy −e, one can convert a finite fraction
of the chain into the free length without breaking any bonds;
namely, since there is a finite density of loops in the folded
ssDNA, one can simply “move” the unbound bases from the
loops to the free segment. This will only result in an entropy
loss, but will not reduce the interaction energy.

Indeed, if the base pairing energy is negative, the magni-
tude of the critical tension is somewhat lowersuq* u,−e /2d
than that at the unzipping point:

q* −
e

2
<

1

l loopsq*d
. s13d

The free segments of the chain exposed to the external
stretching can be viewed as topologically distinct objects
(“vortices”), which separates the system into independently
folded domains. The effective interaction potential of two
consecutive vortices is determined by the free energy of the
folded region between them. At the pointq* , the typical sepa-
ration between the vortices along the chain coordinate, i.e.,
the size of the separable domains, diverges. Thisfolding-
unfolding transition occurs as a result of competition be-
tween the elastic tension and folding entropy, which grows
with the domain size.

Interestingly, Eq.(12) has physical solutions even for
positive interaction energy, i.e., when the base pairing is en-
ergetically unfavorable. It follows from that fact that for
l loop→`, the generic behavior of the looping free energy is
Floopsld.s3/2dlog l (for an ideal Gaussian chain). As a re-
sult,Wsqd remains finite forq→0, whileW8 andl loopsq*d are
diverging asqn−2. Therefore, according to Eq.(12), there is a
finite tension at which the unfolding transition takes place,
for e.0. The asymptotic relationship betweene and q* in
this regime is

l loopsq*d <
el0

2

2
Ws0d. s14d

This yields a power law dependence of the critical tension on
e :q* ,e−2. Note, however, that our conclusion about the un-
folding transition at positive values of base pairing energy
may well be a result of limitations of the model.

IV. APPLICATION TO WORMLIKE CHAIN MODEL

As an example, we discuss the application of the above
approach to the particular case of the WLC model. Its Hamil-
tonian is given by

H =E
0

L F lp
2
S ]2r

] s2D2Gds, s15d

wherelp is the persistence length, andr ssd defines the spatial
conformation of the chain, subjected to the constraint
u]r /]su=1. For this model, Marko and Siggia[17] have pro-
posed the following interpolative relationship between the
stretching forcef and relative extensionx;R/L:

fsxd =
1

lp
F1

4
S 1

s1 − xd2 − 1D + xG . s16d

From here, the functionqelsfd (which is one of the inputs for
our theory) can be expressed in parametric form:

qelsfd =E
0

x

fsx8ddx8 − xfsxd = −
x2

4lp
S 1

s1 − xd2 + 2D .

s17d
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One has also to specify the loop free energy. An analytic
interpolation forFloop was proposed in Ref.[19], in the con-
text of the ring cyclization problem:

e−Floop .
v0

lp
3

3 54p3S2lp
l
D6

expS−
2p2lp

l
+

l

4lp
D, l , 4lp,

S3lp
pl

D3/2F1 −
11

4

lp
l

+
lp
2

5l2
G, l . 4lp. 6

s18d

Herev0&1 Å3 is the effective “reaction volume” associated
with the localization of the loop ends by the hydrogen bond-
ing. We have found a simpler version of the interpolative
expression, which gives a very good fit to the global behav-
ior of the looping probability,e−Floop (see Fig. 2):

e−Floop . v0S 3

plpsl − lpdD
3/2

expS−
4.5

l/lp − 1
Dusl − lpd.

s19d

Hereu is the step function.
Within this approximation, the functionWWLCsqd can be

found analytically:

Wsqd .
a

lp
2exps− 3Î− 2qlp + qlpd . s20d

Here

a =
Î6

p

v0

l0
3 e−«0. s21d

Note thata replaces three parameters of the original model,
v0, l0, and the energy«0. Sinced& l0 and«0.0, this dimen-
sionless parameter is expected to be small. It has the physical
meaning of the effective reaction volume of the loop ends, in
units of l0

3.
Now that we have specifiedWWLCsqd and qsfd, Eqs. (6)

and(7) can be used to findlsfd, together with force-extension
curvesRsfd= lsfdxsfd. The fact thata is a small parameter
allows us to simplify the results. In the regime of negativee,
a sharp unzipping crossover is expected. As we have dis-
cussed in the previous section, its characteristic width is
given by

dq = Î2Wse/2d =
Î2a

lp
expfs− 6Î− elp + elpd/4g . s22d

In the vicinity of the crossover pointqel=e /2, the change in
free length can be well described by a universal function of
the rescaled variableD=sq−e /2d /dq:

l

L
.

1

2S1 −
D

ÎD2 + 1
D . s23d

For large enoughD, this universal behavior breaks down due
to the proximity of the unfolding phase transition. The cor-
responding critical tensionq* is given by

qWLC
* .

e

2
+

1

l loopse/2d
.

e

2
+

1

lps1 + 3/Î− elpd
. s24d

Figure 3 shows the sharp crossover atuqsfdu=e /2. Consis-
tently with Eq. (22), its sharpness increases with lowering
parametera. This can be associated with growth of the typi-
cal length of hybridized regions. The unzipping is clearly
separated from the second-order unfolding transition. While

FIG. 2. Looping probability exps−Floopd as a function of loop
size for different models of ssDNA elasticity. Here the solid line
represents the analytic result for the WLC, Eq.(19), and the points
correspond to the FJC model. Inset: Comparison of classical inter-
polative result for looping probability(from Ref.[19], dashed line),
with the simplified formula Eq.(19).

FIG. 3. Theoretical stretching curves for the WLC model with
self-interaction. Dotted line corresponds to the interaction-free
WLC.
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this crossover regime was not present in the early studies of
the problem, it has been recently reported in Ref.[9]. In that
work, the traditional FJC-based model has been modified to
include the effects of cooperativity, analogous to our param-
eter«0. As we have discussed, the sharp crossover should be
interpreted as unzipping(force-induced denaturation), while
the second-order transition corresponds to topological
change(unfolding) which may be viewed as a precursor of
the unzipping. This physical picture is consistent with the
results of Ref.[9]. On the other hand, our analysis disagrees
with the conclusions of Ref.[10], in which a first-order
phase transition was predicted for the regime of strong
enough hybridization energy.

V. MODEL DEPENDENCE OF THE RESULTS

Here we discuss how the above results may depend on the
choice of the elastic description of ssDNA. It should be
noted that such important features as the unfolding transition
and the unzipping crossover are very robust and nearly inde-
pendent of the model. Furthermore, it is well known that the
stretching curve of ssDNA may be fitted reasonably well by
several models, e.g., extensible versions of the FJC, WLC, or
DPC. This implies that deduction ofqelsfd from existing and
future experimental data is unlikely to provide a sensitive
test for the possible models. On the other hand, we have seen
that the loop free energyFloopsld and consequentlyWsqd are
significant parameters of the problem. As we shall see, these
parameters are very sensitive to the choice of the underlying
elastic model.

In the case of the discreet persistent chain model, we do
not expect any significant deviation ofFloopsld or Wsqd from
those obtained for the WLC model, since the typical bending
radius significantly exceeds the bond length. The(extensible)
FJC model has been the standard framework in which the
discussed problem has been studied so far. Nevertheless, here
we briefly review the results of our theory for the FJC, in
order to identify the major model-dependent features. The
freely jointed chain consists of discreet bonds of lengtha
=2lp, whose orientations are mutually independent. The cor-
responding loop free energy can be written as

expf− Floopsldg . 2S 3

2p
D3/2v0

lp
2 o

n=1

`
dsl − 2nlpd

n3/2 . s25d

The prefactor here ensures that the asymptotic behavior of
the free energy at the large-loop limit coincides with the
WLC result, given by Eq.(18). Now one can findWsqd for
the FJC model:

Wsqd =
3a

2Îplp
2o

n=1

`
exps2qlpnd

n3/2 . s26d

For negativee, the change of the elastic description re-
sults in a modest shift of the critical tensionq* at which the
unfolding transition occurs:

qFJC
* .

e

2
+

1

l loopse/2d
.

e

2
+

1

2lp
. s27d

This should be compared to the WLC result Eq.(24).

While the position of the unzipping pointqel=e /2 is
model independent, the width of the crossover is very sensi-
tive to the behavior ofWsqd. As one can see in Fig. 4, the
shapes ofWsqd curves are substantially different for the
WLC and FJC models. This difference arrises because of the
relative suppression of the short loops in the WLC case.
What is especially remarkable is that the width of the unzip-
ping crossoverdq=Î2Wse /2d decreases withe in a strongly
model-dependent manner. In fact, upon change ofelp from 0
(the dsDNA denaturation point) to 3kT (which roughly cor-
responds to physiological conditions for a -GCGCGC- se-
quence), the ratio of dq for the two models changes by a
factor of .3.5. (Here,G andC denote guanine and cytosine
bases in DNA sequence.) Therefore, an experimental study
of the unzipping crossover in variable conditions(e.g., tem-
perature) would open the possibility of testing the plausible
models of ssDNA elasticity.

VI. CONCLUSIONS

In this paper, we have discussed the effects of base pair-
ing on the stretching behavior of ssDNA, within a theoretical
framework compatible with an arbitrary underlying model of
chain elasticity. Our conclusion is that in a generic case, the
stretching curves exhibit two related but distinct features: a
second-orderunfolding phase transition and a sharpunzip-
ping crossover. The latter is reminiscent of the first-order
transition in dsDNA, as well as the mechanical response of
nonrandom RNA molecules[6]. On the other hand, we have
interpreted the unfolding as a topological transition. At the
critical point, the typical size of an independently folded do-
main diverges(in the thermodynamic limit). This transition
is due to the competition of conformational entropy and elas-
tic free energy, and it is expected to occur even in the regime

FIG. 4. (a) Comparison ofWsqd functions calculated for the
WLC and FJC models. Inset: Relative widthdq of unzipping cross-
overs, for the FJC and WLC, as a function of base pairing energy.
(b) Unzipping behavior of WLC(solid) and FJC(dashed) systems
for the base pairing energy changing betweene=0 and e
=−kBT/ lp. For both models, we puta=0.01.
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when base pairing is energetically unfavorable.
In the light of our results, one can see a clear relationship

between the three types of force-induced denaturation:(i)
unzipping of dsDNA[13,14], (ii ) denaturation of RNA with a
preferred secondary structure[6], and(iii ) stretching of self-
complementary or random ssDNA. While in the case of ds-
DNA the unzipping occurs as a first-order transition, it be-
comes a crossover for the two other cases. The width of the
crossover is defined by the typical length of a single hybrid-
ized region. We expect this width to be sensitive to the se-
quence of ssDNA or RNA. In fact, the force-induced dena-
turation of RNA [6] was predicted to show a sequence of
unzipping steps. It follows from our discussion that the
sharpness of those steps may be even more pronounced than
was originally predicted within FJC-based models. In the
case of ssDNA, the sequence disorder must result in smear-
ing of the unzipping crossover. Because of its entropic na-
ture, the unfolding transition is expected only in the case of
ssDNA (or long RNA, in the molten phase[11]).

At present, the experimental indications of the second-
order unfolding transition are not conclusive enough[3,4].
On the other hand, experiments with uniform self-
complementary DNA show a clear manifestation of the sharp
unzipping crossover[5]. However, their precision is still in-
sufficient to make a quantitative comparison with the theory,
and to distinguish between different underlying elastic mod-
els. Based on our theory, one may extract this information by
performing a systematic experimental study of the unzipping
behavior for various values of hybridization energy(e.g.,
various temperatures). As we have shown, the width of the
crossover is very sensitive to the energy cost of the hairpin
loop.
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