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Unfolding and unzipping of single-stranded DNA by stretching
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We present a theoretical study of single-stranded DNA under stretching. Within the proposed framework, the
effects of base pairing on the mechanical response of the molecule can be studied in combination with an
arbitrary underlying model of chain elasticity. In a generic case, we show that the stretching curve of single-
stranded DNA exhibits two distinct features: the second-order “unfolding” phase transition, and a sharp cross-
over, reminiscent of the first-order “unzipping” transition in double-stranded DNA. We apply the theory to the
particular cases of wormlike chain and freely jointed chain models, and discuss the universal and model-
dependent features of the mechanical response of single-stranded DNA. In particular, we show that variation of
the width of the unzipping crossover with interaction strength is very sensitive to the energetics of hairpin
loops. This opens another way of testing the elastic properties of SSDNA.
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I. INTRODUCTION hairpin construct§15,14 strongly suggest a picture with a
, finite bending modulus of its backbone, which feature is
Dramatic progress has been made over the last decade jBminiscent of the semiflexible wormlike chaifWLC)

employing single-molecule micromanipulation techniquesyogel [17]. Nevertheless, being a continuous model, the
for studies of biological materials and processes. Pioneered ¢ description is unlikely to be valid in the regimes when

by the work of Smithet al. [1] on stretching of double- e giscrete nature of chemical bonds becomes relaeagt
stranded DNA(dsDNA), these techniques have later beenso, 4 sufficiently high stretching forge To overcome this

applied to study proteins, DNA-protein interactions, chromo-jimitation. a discrete persistent chai@PC) model has been
somes, etc. Chain-stretching experiments were also PeBroposed for ssDNA in recent work by Storm and Nelson
formed on single-stranded DNA moleculessDNA) [2-5].  [1g]. Interestingly, the WLC itself was originally introduced
One could expect the response of SSDNA to stretching iy kratky and Porod17] as the continuous limit of a similar
be dramatically different from that of dsDNA, because of thejiscretized model. The authors [E8] have shown that the
effects of the possible base pairing between complementaryyiansible versions of all three modelBJC, WLC, and
segments of the chain. The need for understanding of thgpc) produce a good fit to the experimentally observed
resulting mechanical behavior has already attracted considyetching curves, as long as the force is not too Hifh
erable attention from theoris{$-10. In particular, it has < oqq pN for the FJC, and <400 pN for the WLC and
been shown[7-9 that in the thermodynamic limit, the ppc)
ssDNA chain should undergo a second-order phase transi- The central idea of our paper is to include the effects of
tion, at a finite critical force. Formally, this phenomenon isase pairing within a theoretical framework compatible with
very similar to the hypothetical r)atlve—molten' transition in 51 arpitrary underlying model of ssDNA elasticity. In this
RNA [11], as well as to the classicgfet unconfirmegipic-  \yay we can separate the two parts of the problem: the search
ture of dsDNA denaturatiofd2]. o _ for an adequate elastic description of ssDNA, and the evalu-
The predicted critical behavior is qualitatively different 4ijon of the effects of its self-interactions. In fact, one may
from another related phenomenon, the force-induced dengje aple to start with an empirical elastic model extracted
turation (unzipping of dsDNA [13,14. The unzipping is &  from independent experiments, and use our theory to predict

first-order transition, which occurs as a result of competition,o stretching behavior of the chain after “switching on” the
between the elastic energy of the stretched ssDNA, and thg;ge pairing interactions.

base pairinghybridization energy within dsDNA. The very
same effects are essential for the above second-order phase
transition in stretched ssDNA. As a part of the present work,

we will clarify the relationship between the two phenomena. e consider a ssDNA chain subjected to an external pull-
The theoretical modeling of ssDNA and RNA is tradition- jng forcef. As an input for our theory, one has to specify two
ally done within a freely jointed chai(FJ§ model. Its ex-  fynctions characterizing the system without self-interactions:
tensible version was originally used for fitting the early 4 (f) the elastic free energy per unit chain length vs pulling
ssDNA stretching dat§2]. However, both the microscopic fgyce. andF (1), the free energy of a loop as a function of
structure of ssDNA and the recent experiments with DNAjis contour length. Our goal is to study the effect of interac-

tions between complementary segments of the chain. Simi-

larly to Ref.[7], we assume the interaction strength to be the

*Electronic address: alexei@umich.edu same for any two chain fragments. It will be characterized by

II. THEORETICAL FRAMEWORK
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L e 0 approach to a more general form of hybridization energy,
Pl g0+ €Lpyp, With the constank,>0 representing the energy

—e R : cost of termination of the double-stranded segment. Intro-

duction ofey accounts for the cooperativity of the base pair-

ing interactions.

X Traditionally, problems involving DNA or RNA folding or

10 pseadoknots denaturation are studied within a discrete model. Each dis-

(¢) Dyson Equation: crete “monomer” in this approach represents a chain segment

which can hybridize independently of its neighbors. Its

~

e length is assumed to be equal to the statistical segment,
which makes it easy to combine this description with the FJC
FIG. 1. Schematic representation of partition function calcula-model. Since we are interested in developing a theory for an
tion. Thin solid lines represera,, while dashed lines indicate base arbitrary model of chain elasticity, it is logical to abandon
pairing of distant chain segmentsotted. this artificial discretization of hybridized segments. Of
course, the base pairing remains fundamentally discrete on
a single parametet, defined as the pairing energy per unit the length scalé, of a single base. As long as the relevant
chain length. Strictly speaking, this should limit the applica-physics occurs on larger scales, ssDNA can be considered as
bility of our approach to self-complementary periodic se-a continuous chain.
quences of ssDNAsuch as ATATAT. However, as discussed ~ The crucial observation is that one can typically neglect
in [7,8], this uniform model may be reasonably adequate forll the diagrams with intersecting dashed lines. Such a situ-
random sequences, too. Nevertheless, the effect of randoration would correspond to a “pseudoknot,” whose probabil-
ness remains an important problem for future studies. ity is low because it requires winding of ssDNA or RNA
Hybridization of distant chain segments results in looping.around itself[Fig. 1(b)]. Thanks to this topological con-
Therefore, the interactions reduce the effectifree) chain  straint, the self-energy diagram entering the Dyson equation
length| exposed to the stretching force. Our goal is to cal-[Fig. 1(c)] may be calculated exactly within the one-loop
culate the partition function of the systeA(L,l), param- (Hartreg approximation. Since we have assumed a uniform
etrized by the total chain length and free length. The interaction parameter, the problem has a particularly simple
general form of the interaction-free partition function is form in the Laplace representation:
Zo(L,l)=exp(ugl) (L -1), becausé andL coincide, and dif-
ferent chain segments are statistically independemt ne- _ 1 dL’ dL”dI
glect excluded g\J/olume effec)tsWithoutonss gf generality, Z ) =2 () - ffj — AL
one can chooseu;=0. It is useful to perform a double

Laplace transform of the partition functicg(L,l). This re- Xexg— w(2L" + L") = el” = Fioopl) — £o].
sults in introduction of the parametesisandg, conjugated to (3
L andl, respectively(the parameter conjugated to the total
length is often called the fugacity From here, one can obtain
2= | [ z(L)exd-ul - qidL di 1 10, q) = W(a,)
(2,0) (LDexd-pL —qlldLdl. (1) Z g =pu+q- , (4)
0o Jo 2ute

In particular,Zy(u,q)=1/(u+q). Since the elastic part of the wereq, corresponds to the pole i#(x,q), and
free energy isge(f)l, the overall free energy may be ex- a

pressed as g0 [*
i g W(q) = E f exl= Fioop() + gl]dl. (5
“w 0o Jo
F(L,f) =-log f Z Gl —. )
—joo al
Here and below, we takiesT=1. Ill. GENERIC BEHAVIOR: “UNZIPPING” VERSUS
It is well known that the partition function of uniform “UNFOLDING”
RNA or ssDNA may be calculated in a recursive manner, S
reminiscent of the Hartree approximatifg+11]. This calcu- In the thermodynamic limifL — ),
lation can be represented in a diagrammatic form shown in .
Fig. 1. The solid lines correspond to the bare partition func- d e d d
9. > b : part 1= -Zlog|  Z(wgetE = -
tion Zy; dotted fragments connected with dashed lines repre aq e 2 da |4 1)
sent pairing(hybridization of the corresponding chain seg- Gei(F) el
ments. Within our approach, the energy cost of the pairing is (6)

€LnyptFioop(l), Where Ly, is the length of the hybridized
region, and is the free length of the chain segment beingHere the functionuy(q) again corresponds to the pole in
“internalized” due to the looping. In fact, one can extend ourZ(u,q), i.e., it is inverse tag,(u). Explicitly,
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1| € € 2 Indeed, if the base pairing energy is negative, the magni-

Mq() = ~5l3ta \/(5 - Q) +2W(@) |- (7)  tude of the critical tension is somewhat lowgy'|<-e/2)
than that at the unzipping point:

This yields the following result for the free length as a func-

tion of tension: e 1 (13)

|1, Ga-d2+W(G 2 lool)

L = o\ 7 \,,/(q — e2)2+ 2W(qy) ) (8) The free segments of the chain exposed to the external
el ¢l stretching can be viewed as topologically distinct objects

HereW’ =dW/dg. Note that from the definition of the func- (“vortices”), which separates the system into independently

tion W, Eg. (5), one can relate its logarithmic derivative to folded domains. The effective interaction potential of two

the average length of the loop: consecutive vortices is determined by the free energy of the
Y folded region between them. At the poit the typical sepa-
loop(Q) = e (9)  ration between the vortices along the chain coordinate, i.e.,

the size of the separable domains, diverges. Tbiding-

If I is known, one can easily find the relative elongation ofunfolding transition occurs as a result of competition be-
the chain. i.e.. the ratio of the end-to-end distafcto the tWween the elastic tension and folding entropy, which grows

total chain length., which is observable experimentally: ~ With the domain size. , ,
Interestingly, Eq.(12) has physical solutions even for

R =-19%( e~ €2 +W'(qe) (10  Positive interaction energy, i.e., when the base pairing is en-
V(e - €2)2+ 2W(ge) ) ergetically unfavorable. It follows from t_hat fact that for
) ) ] _ ligop—, the generic behavior of the looping free energy is
Herex:—&qe,/af is the relative elongation of the free portion Fioop(l) = (3/2)log | (for an ideal Gaussian chainAs a re-
of the chain. _ o sult, W(q) remains finite folg— 0, while W’ andl;,op(q°) are
According to Eq.(8), in the strong stretching limitde  gjiverging a2 Therefore, according to EL2), there is a
—~=) the chain becomes completely “fred:=L. Further fiite tension at which the unfolding transition takes place,

examination of our expression for the free length reveals it$o; ¢>0. The asymptotic relationship betweerand g in
peculiar behavior near the poigy=e/2. In fact, in the limit  js regime is

of vanishingW (i.e., very high energy cost of a lopfd(qe)
becomes a step function changing from OLtat that point.

In a realistic situation, it is transformed into a crossover
whose width depends oW as

Xl =
L 2 0f

G
oo @) = WO, (14

This yields a power law dependence of the critical tension on
0= V2W(€l2). (11)  e:q"~ €2 Note, however, that our conclusion about the un-

Since the location of that crossover corresponds to the poir{P lding transition at p05|_t|v_e \(alues of base pairing energy
may well be a result of limitations of the model.

were the hybridization free energy is exactly equal to the
elastic one, we conplude that t_h_is behavior is directly relgted IV. APPLICATION TO WORMLIKE CHAIN MODEL
to the first-ordemnzippingtransition of dsDNA. The transi-
tion is transformed into the crossover due to the finite size of As an example, we discuss the application of the above
the hybridized segments. approach to the particular case of the WLC model. Its Hamil-
Another important feature of our result is that the freetonian is given by
fraction of the chainl/L goes to zero at finite tensiog LT {2 \2
=q". According to Eq(8) the condition for this to happen is H =f [J@(_SZ) }ds (15)
. - . 2\49 ’
— W(q ) _ W (q ) — 1 _ IIoop(q )W( *) 0
W (q") 2 lioop(@") 12 q). wherel, is the persistence length, ant) defines the spatial
(12) conformation of the chain, subjected to the constraint
|or 1 9s|=1. For this model, Marko and Siggja7] have pro-

This point corresponds to the second-order phase transitigmosed the following interpolative relationship between the
that has been reported in the earlier studies of the problenstretching forcef and relative extensior=R/L:

*

g — €2

The crucial observation is that this transition is physically 11 1
distinct from the unzipping crossover. It may be viewed as a f(x) = _{_< - 1) x} (16)
precursor of force-induced denaturation. Indeed, even when ol 4\ (1-x)?

the tension m_the free segments is still msuff!c!ent to over-.om here, the functiog(f) (which is one of the inputs for
come the binding energye;-one can convert a finite fraction our theory can be expressed in parametric form:
of the chain into the free length without breaking any bonds; P P '

namely, since there is a finite density of loops in the folded X X2 1

ssDNA, one can simply “move” the unbound bases from the ~ Jei(f) :f f(x")dx" —xf(x) = - R 2].
- . 0 p\(1-X)

loops to the free segment. This will only result in an entropy

loss, but will not reduce the interaction energy. (17)
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FIG. 3. Theoretical stretching curves for the WLC model with
self-interaction. Dotted line corresponds to the interaction-free

FIG. 2. Looping probability ex>-Fq,p) as a function of loop
size for different models of ssDNA elasticity. Here the solid line
represents the analytic result for the WLC, EDP), and the points
correspond to the FJC model. Inset: Comparison of classical interVLC-
polative result for looping probabilitffrom Ref.[19], dashed ling
with the simplified formula Eq(19). J6 Vo

a=——€e %

3 (21)
One has also to specify the loop free energy. An analytic ™o
interpolation forFy,, was proposed in Ref19)], in the con-  Note thata replaces three parameters of the original model,
text of the ring cyclization problem: vo, lg, and the energy,. Sinced=<Il, andey>0, this dimen-
sionless parameter is expected to be small. It has the physical

meaning of the effective reaction volume of the loop ends, in

e Fioop ~ 0 units of I3.
p Now that we have specifiedy, c(q) andq(f), Egs.(6)

Herevo<1 A3 is the effective “reaction volume” associated
with the localization of the loop ends by the hydrogen bond-

(18)

and(7) can be used to findf), together with force-extension
curvesR(f)=I(f)x(f). The fact thata is a small parameter
allows us to simplify the results. In the regime of negatéye

a sharp unzipping crossover is expected. As we have dis-
cussed in the previous section, its characteristic width is
given by

84= V2W(el2) = “"lﬁ“ex;{(— 6\— el +elp)/a]. (22
p

ing. We have found a simpler version of the interpolativeln the vicinity of the crossover poirdy=€/2, the change in
expression, which gives a very good fit to the global behaviree length can be well described by a universal function of

ior of the looping probabilitye oo (see Fig. 2

oo L)” p(_ 4.5) B
e p_v°<wlp(l—lp) ex -1 ol —1p).

(19

Here 6 is the step function.

Within this approximation, the functiofiy, -(q) can be

found analytically:

o Q=
W(q) = I—zexp(— 3V-2ql,+ qlp).
P

Here

(20)

the rescaled variabld=(q-€/2)/ ;.

I 1 A
—=—l-—=]. (23

L 2 V’Az +1

For large enough, this universal behavior breaks down due
to the proximity of the unfolding phase transition. The cor-
responding critical tensioq” is given by

1 € 1

. €
=t =t —— (24
OQwic 2" loo€l2) 2 (L + 3N d ) (24)

Figure 3 shows the sharp crossoveluaf)|=e€/2. Consis-
tently with Eq.(22), its sharpness increases with lowering
parameter. This can be associated with growth of the typi-
cal length of hybridized regions. The unzipping is clearly
separated from the second-order unfolding transition. While
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this crossover regime was not present in the early studies %) 2

the problem, it has been recently reported in ReF. In that

work, the traditional FJC-based model has been modified t¢ g

include the effects of cooperativity, analogous to our param- “‘—é“ 4 2
s

etergg. As we have discussed, the sharp crossover should b % 1w 0
\\
Wi

q
o

5(lc) 5 (wic
a

q

interpreted as unzippingorce-induced denaturatignwhile
the second-order transition corresponds to topological LC >~
change(unfolding) which may be viewed as a precursor of s o 4
the unzipping. This physical picture is consistent with the b 2
results of Ref[9]. On the other hand, our analysis disagrees
with the conclusions of Ref[10], in which a first-order

phase transition was predicted for the regime of strong & [~
enough hybridization energy. o

T
\
[}
\
\
[
[
[

fl /k

V. MODEL DEPENDENCE OF THE RESULTS d e=0

Here we discuss how the above results may depend on th )
choice of the elastic description of ssDNA. It should be
noted that s_uch important features as the unfolding transition FIG. 4. (a) Comparison ofW(q) functions calculated for the
and the unzipping crossover are very robust and nearly mdev-v

- LC and FJC models. Inset: Relative widsh of unzipping cross-
pendent of the model. Furthermore, it is well known that theovers’ for the FJC and WLC, as a function of base pairing energy.

stretching curve of ssDNA may be fi_tted reasonably well by(b) Unzipping behavior of WLQsolid) and FIC(dashed systems
several models, e.g., extensible versions of the FJC, WLC, G the base pairing energy changing betweer0 and e

DPC. This implies that deduction of,(f) from existing and =—kgT/I,. For both models, we put=0.01.
future experimental data is unlikely to provide a sensitive
test for the possible models. On the other hand, we have seen

that the loop free energlioq(l) and consequentiM(q) are model independent, the width of the crossover is very sensi-

significant parameters of the problem. As we shall see, thesg . {5 the behavior ofM(q). As one can see in Fig. 4, the
parameters are very sensitive to the choice of the underlymghapes ofW(q) curves are substantially different fo; the

elastic model. . . . WLC and FJC models. This difference arrises because of the
In the case of the discreet persistent chain model, we do

not expect any significant deviation Bf,u,(l) or W(g) from relative suppression of the short loops in the WLC case.

. . . . What is especially remarkable is that the width of the unzip-
those obtained for the WLC model, since the typical bending.. 2 o o L
radius significantly exceeds the bond length. Téaensiblg gpmg crossovedy =\ 2W(e/2) decreases witl in a strongly

FJC model has been the standard framework in which th&'0d€l-dependent manner. In fact, upon change pfrom O

discussed problem has been studied so far. Nevertheless, h rggse gﬁEsNg d?]n?glrgt'% ;T&?t%kr;rs(}g?lg é%ugglé (;Zr_'
we briefly review the results of our theory for the FJC, in P physiolog ”

order to identify the major model-dependent features. Th uetn;:e,f T; 5rat||_(|) rOf‘é f?]rdtg% t\rlnvot mOdiI;sn chzilrégest b)gna
freely jointed chain consists of discreet bonds of length actor of =3.5. (Here, G a enote guanine and cytosine

=2l,, whose orientations are mutually independent. The Corpases in DNA sequengeTherefore, an experimental study

. : of the unzipping crossover in variable conditiomsg., tem-
responding loop free energy can be written as peraturg would open the possibility of testing the plausible

N M M M M M M M M
0 0.1 0.2 0.3 0.4 05 0.6 0.7 08 liﬂ- 1

While the position of the unzipping pointg=e/2 is

3 \32y, & 81 - 2nly) models of ssDNA elasticity.
eXFf‘ Floop(l)] = 2(5) ng n3/2 : (25)
pn=1

The prefactor here ensures that the asymptotic behavior of VI. CONCLUSIONS

the free energy at the large-loop limit coingides with the |n this paper, we have discussed the effects of base pair-
WLC result, given by Eq(18). Now one can findM(q) for  ing on the stretching behavior of ssDNA, within a theoretical

the FJC model: framework compatible with an arbitrary underlying model of
30 & o2q1n) chain elasticity. Our conclusion is that in a generic case, the
a exp(2ql,n i ibi it .
W(q) = 22 3/zp ) (26) stretching curves exhibit two related but distinct features: a

second-ordeunfolding phase transition and a shagmzip-
) . o ping crossover. The latter is reminiscent of the first-order
For negativee, the change of the elastic description re- yransition in dsDNA, as well as the mechanical response of
sults in a modest shift of the critical tensign at which the  5hrandom RNA moleculg§]. On the other hand, we have
unfolding transition occurs: interpreted the unfolding as a topological transition. At the
. € 1 e 1 critical point, the typical size of an independently folded do-
Grac=75* 2 2 o (27)  main divergegin the thermodynamic limjt This transition
loop p is due to the competition of conformational entropy and elas-
This should be compared to the WLC result E2¢). tic free energy, and it is expected to occur even in the regime

—
2V7T|pn:1 n
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when base pairing is energetically unfavorable. At present, the experimental indications of the second-
In the light of our results, one can see a clear relationshiprder unfolding transition are not conclusive enouygty.
between the three types of force-induced denaturaiion: On the other hand, experiments with uniform self-
unzipping of dsDNA13,14, (ii) denaturation of RNAwith a complementary DNA show a clear manifestation of the sharp
preferred secondary structui@], and(iii) stretching of self-  unzipping crossovef5]. However, their precision is still in-
complementary or random ssDNA. While in the case of dssyfficient to make a quantitative comparison with the theory,
DNA the unzipping occurs as a first-order transition, it be-an to distinguish between different underlying elastic mod-

comes a crossover for the two other cases. The width of thgis Based on our theory, one may extract this information by
crossover is defined by the typical length of a single hybrid-qtorming a systematic experimental study of the unzipping
ized region. We expect this width to be sensitive to the se

. havior for vari val f hybridization ener¢g.g.
quence of ssDNA or RNA. In fact, the force-induced dena-be avior for various values of hybridization energy.g.,

: . various temperatur@sAs we have shown, the width of the
tura_t|or_1 of RNA[6] was predicted to Sh.OW a sequence 0fcrossover is very sensitive to the energy cost of the hairpin
unzipping steps. It follows from our discussion that the

sharpness of those steps may be even more pronounced thaqP:

was originally predicted within FIJC-based models. In the
case of ssDNA, the sequence disorder must result in smear-
ing of the unzipping crossover. Because of its entropic na-
ture, the unfolding transition is expected only in the case of The author thanks B. Shraiman, D. Lubensky, J. Marko,
ssDNA (or long RNA, in the molten phagdl)). and E. Siggia for valuable discussions.

ACKNOWLEDGMENTS

[1] S. B. Smith, L. Finzi, and C. Bustamante, Scier®&8 1122 [11] R. Bundschuh and T. Hwa, Phys. Rev. Le88, 1479(1999.

(1992. [12] D. Poland and H. A. Scherag@heory of Helix-Coil Transi-
[2] S. B. Smith, Y. Cui, and C. Bustamante, Scien2él, 795 tions in BiopolymergAcademic, New York, 1970
(1996. [13] S. M. Bhattacharjee, J. Phys. 83, L423 (2000.

[3] 2- _Mjigr’AD§7Bi';sgrggnéO%”d V. Croquette, Proc. Natl. Acad. |14 p K. Lubensky and D. R. Nelson, Phys. Rev. Le86, 1572
ci. U.S.A. 97, (2000. (2000; Phys. Rev. E65, 031917(2002.

4] M.-N. Dessinge®t al, Phys. Rev. Lett.89, 248102(2002. . .
{5} M. Rief, H. Cgusen-Schgumann and H. E. Gaub( Na? Struct.[la N. L. Goddard, G. Bonnet, O. Krichevsky, and A. Libchaber,

Biol. 6, 346(1999. Phys. Rev. Lett.85, 2400(2000.
[6] U. Gerland, R. Bundschuh, and T. Hwa, Biophys81, 1324 [16] S. V. Kuznetsov, Y. Shen, A. S. Benight, and A. Ansari, Bio-
[7] A. Montanari and M. Mézard, Phys. Rev. Letg6, 2178  [17] O. Kratky and G. Porod, Recl. Trav. Chim. Pays-Bit 1106
(2009). (1949; J. F. Marko and E. Siggia, Macromolecul@8, 8759
[8] M. Miiller, F. Krzakala, and M. Mézard, Eur. Phys. J.9E67 (1995.
(2002. [18] C. Storm and P. C. Nelson, Phys. Rev.6Z 051906(2003.
[9] M. Mlller, Phys. Rev. E67, 021914(2003. [19] J. Shimada and H. Yamakawa, Macromolecul&g 689
[10] H. Zhou and Y. Zhang, J. Chem. Phykl4, 8694(200J). (1984).

051901-6



